

Toward Silicon-Proven Detailed Routing for Analog and Mixed-Signal Circuits

Hao Chen, Keren Zhu, Mingjie Liu, Xiyuan Tang, Nan Sun, and David Z. Pan ECE Department The University of Texas at Austin This work is supported in part by the NSF under Grant No. 1704758, and the DARPA ERI IDEA program

Nov 12, 2020

Speaker – Hao Chen

- I am a Ph.D. student in electrical and computer engineering at The University of Texas at Austin.
- I received the B.S. degree in electrical engineering from National Taiwan University (NTU) in 2019.
- Research interests: VLSI physical design and analog/mixed-signal circuit layout synthesis.

High Demand of Analog/Mixed-Signal IC

- Internet of Things (IoT), autonomous and electric vehicles, communication and 5G networks...
- Every sensor-related application needs analog circuits!!

Challenges of Analog Layout Routing

Courtesy of [Ou+, TCAD'14]

Aesthetic engineering

Hey, that looks strange, right?

Courtesy of [Rutenbar, TCACE'16]

No comprehensive and exact descriptiveness!!

Typical Automatic Analog Circuit Design Flow

Analog Routing Constraints

Symmetry constraints are widely accepted

Analog Routing Constraints

Current matching, balancing

Avoid IR drop issues

Our AMS Routing Framework

Repeat the routing process for each node in the hierarchy tree

- Assign symmetry constraints to nets according to pins locations
- Maximize the overall potential routing symmetry (Weighted graph matching)

- Assign symmetry constraints to nets according to pins locations
- Maximize the overall potential routing symmetry (Weighted graph matching)

- Assign symmetry constraints to nets according to pins locations
- Maximize the overall potential routing symmetry (Weighted graph matching)

- Assign symmetry constraints to nets according to pins locations
- Maximize the overall potential routing symmetry (Weighted graph matching)

- Assign symmetry constraints to nets according to pins locations
- Maximize the overall potential routing symmetry (Weighted graph matching)

- Assign symmetry constraints to nets according to pins locations
- Maximize the overall potential routing symmetry (Weighted graph matching)

Edmond's blossom algorithm

- Assign symmetry constraints to nets according to pins locations
- Maximize the overall potential routing symmetry (Weighted graph matching)

- Assigned Constraints
- Net1: self-symmetry
- Net2, Net3: symmetry
- Net4: self-symmetry

Pin Access Assignment

Design rule violations

Pin Clustering

 $p_{i,j}$: the j^{th} pin of net i

- lacksquare
- Connect the pins in each cluster
- Connect the clusters and the remaining pins

Find the maximum subset of totally symmetric pins and form clusters

Experimental Results

Setup

- C++ with Boost, Lemon
- CPU: Intel i9-7900X @ 3.3GHz

[Zhu+, ICCAD'19]

Benchmark	WL	VIA	Sym Deg.	DRV	Runtime (s)	Benchmark	WL	VIA	Sym Deg.	DRV	Rur (
COMP	145.67	90	0.37	83	1.34	COMP	138.40	19	0.95	0	0
OTA1	520.64	167	0.31	170	36.30	OTA1	386.80	38	0.88	0	1.
OTA2	546.88	191	0.19	130	15.18	OTA2	523.40	79	0.70	0	0.
ADC1	2898.84	498	0.37	550	39.65	ADC1	2686.60	175	0.62	0	2.
ADC2	N/A	N/A	N/A	N/A	N/A	ADC2	3327.60	184	0.69	0	18
Norm.	1.13	3.60	0.40	-	24.75	Norm.	1.00	1.00	1.00	-	1

Benchmark circuits

- COMP: comparator
- OTA1: Miller compensation OTA
- OTA2: 2-stage feedforward compensation OTA
- ADC1: 2^{nd} -order CT $\Delta\Sigma$ modulator
- ADC2: 3^{rd} -order CT $\Delta\Sigma$ modulator

This work

13% WL reduction DRC clean 24X speedup

Experimental Results

Setup

- C++ with Boost, Lemon
- CPU: Intel i9-7900X @ 3.3GHz

ADC1 simulation result

Metrics	Schematic	[Zhu+, ICCAD'19]	This work
Fs (MHz)		320	
BW (MHz)		5	
SNDR (dB)	67.7	63.0	63.5
SFDR (dB)	84.8	78.0	81.7
Power (uW)	838.1	842.6	858.0

Benchmark circuits

- COMP: comparator
- OTA1: Miller compensation OTA
- OTA2: 2-stage feedforward compensation OTA
- ADC1: 2^{nd} -order CT $\Delta\Sigma$ modulator
- ADC2: 3^{rd} -order CT $\Delta\Sigma$ modulator

OTA2 simulation result

Metrics	Schematic	[Zhu+, ICCAD'19]	This work
DC Gain (dB)	54.0	52.9	54.1
BW (MHz)	605.2	444.8	477.0
PM (degree)	64.1	75.3	76.1
Offset (uV)	-	893.3	145.7
Noise (uVrms)	12070.1	9711.5	9822.1
Power (uW)	428.7	424.3	439.7

Experimental Results (ADC2)

PVT simulation

Corner	SNDR(dB)	SFDR(dB)	Power(ι
TT-N	66.1	79.8	759.0
TT-C	67.4	80.8	747.8
TT-H	64.3	78.3	774.7
FF-C	71.9	83.5	812.2
FF-H	65.4	82.7	854.4
SS-C	62.4	77.8	679.8
SS-H	62.1	76.8	711.9

Experimental Results (ADC2)

ADC2

Taped-out and in measurements!!

AMS Router

- Symmetry constraint allocation
- Pin Access Assignment
- Hierarchical routing scheme for large/complicated systems with pin clustering
- Sign-off quality layout (DRC/LVS clean, performance guaranteed)

Future directions

- Advanced technology nodes (FinFET)
- Extended circuit classes

Machine Generated Analog IC Layout (MAGICAL)

- This work is part of the MAGICAL project
- End-to-end analog layout automation system
- Open source at Github: https://github.com/magicaleda/MAGICAL

MAGICAL INPUTS
Circuit Netlis
Design Rules
Parametri
Instances

Thank you!