
GeniusRoute: A New Analog Routing Paradigm Using
Generative Neural Network Guidance

Keren Zhu, Mingjie Liu, Yibo Lin, Biying Xu, Shaolan Li, Xiyuan Tang, Nan Sun, and David Z. Pan
ECE Department, The University of Texas at Austin, Austin, TX, USA

{keren.zhu, jay liu, yibolin, biying, slliandy, xitang}@utexas.edu, nansun@mail.utexas.edu, dpan@ece.utexas.edu

Abstract—Due to sensitive layout-dependent effects and varied per-
formance metrics, analog routing automation for performance-driven
layout synthesis is difficult to generalize. Existing research has proposed
a number of heuristic layout constraints targeting specific performance
metrics. However, previous frameworks fail to automatically combine
routing with human intelligence. This paper proposes a novel, fully
automated, analog routing paradigm that leverages machine learning
to provide routing guidance, mimicking the sophisticated manual layout
approaches. Experiments show that the proposed methodology obtains
significant improvements over existing techniques and achieves competi-
tive performance to manual layouts while being capable of generalizing
to circuits of different functionality.

I. INTRODUCTION

The endeavor to automate routing for analog and mixed-signal
(AMS) integrated circuits (IC) has been continuing for years [1].
However, due to the incapability of following designers’ experience
and considering various layout-dependent effects, little adoption has
been demonstrated in practical analog design flow [2].

Existing efforts on analog routing can in general be classified
into three categories: template-based, simulation-based, and heuristic
constraint-based approaches. Template-based approaches generate
routing based on human-designed templates [3], [4]. These tech-
niques can achieve high post-layout performance for design-specific
applications such as layout retargeting, which is difficult to scale to
general designs due to complexity of input templates. Simulation-
based approaches rely on simulations to analyze circuit functionality
and optimize performance. Through sensitivity analysis, the work of
[5], [6] identified critical nets and matching constraints, which were
embedded in the layout optimization process. These methodologies
can be generalized for various circuits and performance metrics,
while the required amount of simulations may not scale with design
complexity. Heuristic Constraint-based approaches tackle analog
routing by identifying human layout techniques and embedding them
as constraints. The most widely adopted heuristic is the symmetric
net pair constraint [7], [8], [9], [10], [11], [12], [13], [14]. Ou et
al. [9] further extended it to different levels of geometrical matching
constraints. There are other works that forbid routing over the active
regions of transistors [11], [15], optimize power routing [16], [17]
and propose shielding critical nets [14]. With complicated real analog
designs, these simple heuristics are often not enough to cover various
layout dependent effects or follow the experience of design expertise.

In practice, the performance of analog circuits is sensitive to even
minor layout changes. We conduct a simple experiment here on a
comparator to show how subtle changes in clock routing can affect the
offset performance. Figure 1 shows a manual layout of a comparator
circuit that is designed by an experienced designer where the clock
routing detours around the layout boundary. This particular routing
choice is “counter-intuitive” in the sense of minimum wirelength.
Better solution could be easily achieved by symmetrically routing
in the center of the layout for shorter wirelength. To understand the
reason behind such a design choice, we setup an experiment on the

Pin 1 Pin 2

Pin 4Pin 3

CLK Net
Routing

Fig. 1: The routing layers of a manual comparator layout.

Sweep routing from center to boundary

Fig. 2: Experiments on comparator clock routing.

clock net routing. In the experiment, we symmetrically route the clock
net starting from the exact center, then gradually push it towards
the layout boundary, as shown in Fig. 2. Figure 3 plots the post-
layout simulation result of input-referred offset, upon which we have
following observations. (1) Even with perfect symmetry, clock routing
can still significantly affect the offset of this design. This effect might
be caused by the clock coupling with sensitive nets, which makes it
difficult for automatic tools to predict or optimize for. (2) The manual
layout solution might not be optimal for a particular performance
metric, but in general, is less sensitive to subtle layout changes. As
a result, it can be more robust against layout-dependent effects and
process variations.

Such design expertise is hidden in well-planned manual layouts,
but there is yet lacking an efficient and general way to transfer them
into automated routing tools. For instance, from the above experi-
ment, one might summarize a simple heuristic that clock nets should
detour around the module to avoid coupling with the nets at the center
of the layout. However, this is a design-specific knowledge and is hard
to be transferred into a generalized constraint; the heuristic might be

0 5 10 15

400

600

800

Clock Routing Distance from Center

In
pu

t-
re

fe
rr

ed
O

ff
se

t
[u

V
]

Manual

Fig. 3: Comparator input-referred offset experiment results.

valid for some placements but not for all situations. Some routing
decisions are based more on experience and multiple performance
trade-off considerations rather than simply following explicitly listed
rules. Furthermore, arbitrary human knowledge is also often hard
to be fully encoded and optimized using traditional programming
practices. Thus, a methodology that can implicitly summarize design
expertise and automatically extract constraints from good existing
layouts is preferred in both the development of analog routing tools
and the practice in the real design flow.

Recent advancements in machine learning have demonstrated its
effectiveness in learning hidden structures from data without explicit
instructions [18], [19]. Among the machine learning techniques,
generative neural networks have demonstrated successful application
in different fields of VLSI design automation [20], [21], [22], [23].
While it is difficult to embed every human layout technique into
rules in an automatic routing algorithm, we can rely on machine
learning models to extract layout patterns and infer the human
behavior on routing. In some sense, it is building a template library
automatically via machine learning models. Compared to existing
work in rule-based analog layout template mining [24], machine
learning approaches provide enhanced generality and flexibility in
a fully-automatic manner.

In this paper, we propose GeniusRoute, a new methodology for
automatic analog routing with guidance from a generative neural net-
work. Leveraging the machine learning technique based on variational
autoencoder (VAE), GeniusRoute extracts latent layout strategies of
human engineers and applies the learned knowledge in guiding the
routing algorithm. Our main contributions are summarized as follows:

• We propose a fully automated AMS routing that can imitate
human intelligence from well-designed manual layouts.

• We develop a new methodology for implicit extraction of routing
expertise through machine learning algorithms instead of explicit
hard-encoded constraints.

• We propose a detailed analog routing algorithm honoring the
generated guidance from the machine learning model as well as
the enforcement of additional constraints such as net symmetry.

• Experimental results demonstrate that our proposed framework
achieves competitive performance compared with manual lay-
outs from experienced human engineers.

The rest of this paper is organized as follows. Section II formulates
the analog routing problem and introduces the background on VAE.
Section III presents the GeniusRoute framework. Section IV reports
the experimental results. Finally, Section V concludes the paper.

II. PRELIMINARIES

In this section, the problem formulation of analog circuit routing is
presented first (Sec. II-A). Then brief overviews of two sub-problems

in GeniusRoute are given: routing guide generation (Sec. II-B) and
guided analog detailed routing (Sec. II-C). An introduction to the
machine learning model, VAE, is also presented (Sec. II-D).

A. Analog Routing Problem Formulation

The analog routing problem can be formulated as follows: given
a set of placed devices M = {mi|1 ≤ i ≤ |M |}, a set of nets N =
{ni|1 ≤ i ≤ |N |}, a set of symmetry net pairs NSP = {nSPi |1 ≤
i ≤ |NSP |}, a set of self-symmetry nets NSS = {nSSi |1 ≤ i ≤
|NSS |}, a set of special nets with types {NT

i |1 ≤ i ≤ |NT
i |},

and the design rules, route all the nets and optimize the post-layout
performance.

GeniusRoute decomposes the analog routing problem into two
sub-problems: routing guide generation and guided analog detailed
routing.

B. Routing Guidance Generation

Routing guide generation learns the human behavior in manual
routing and generates the routing guidance for the downstream router.
The problem can be formulated as follows: given the placement M ,
a set of nets N∗ ∈ N with type NT , predict the probability map
r ∈ <n×n, where ri,j describe the inferred probability that N∗ is
likely to be routed in region i, j of the layout. Intuitively, routing
guide is a 2D probability map of the likelihood that the given net
will be routed in each region by a human engineer.

C. Guided Analog Detailed Routing

Guided analog detailed routing takes placement M , nets N , design
rules and a set of generated routing guidance R = {ri|1 ≤ i ≤ |R|}
as input, and routes all the nets while honoring symmetric constraints
and routing guidance.

D. Variational Autoencoder

We adopt VAE [25] as the base for our machine learning models.
VAE is an unsupervised learning algorithm to extract efficient data
encoding (latent variables) from the training data. VAE follows a sim-
ilar idea of autoencoder in constructing an encoder-decoder structure.
Figure 4 shows an autoencoder architecture. An autoencoder takes
samples {xi}ni=1 from domain X and finds an efficient encoding
z of the data. It consists of two neural networks: the encoder Eφ
and the decoder Dθ . Encoder Eφ converts input data x into low-
dimensional latent variable vector z, and decoder reconstructs X̂ from
z. By minimizing the reconstruction loss between original inputs X
and reconstructed outputs X̂ , i.e., L(x, x̂), the autoencoder learns an
efficient encoding of X with enough information to reconstruct the
inputs.

VAE further uses parametric distribution, usually Gaussian, to
model X and Z, i.e., P (X|z, θ) ∼ N(µ(z), σ(z)) and z ∼ N(0, I).
The objective is to maximize the probability of each X in the training
set under the entire generative process, i.e.,

P (X) =

∫
P (X|z, θ)P (z)dz.

During the training process, µ(z) and σ(z) are trained by an
encoder, and the objective is to maximize:

logP (X|z)−DKL[Q(z|X)||P (z)],

where logP (X|z) is a reconstruction log-likelihood and DKL is
the Kullback-Leibler (KL) divergence measuring the dissimilarity
between the learned distribution Q and training distribution P . In
practice, to enable the backpropogation with stochastic gradient
decent, the following reparameterization trick is often applied: first

z1

z2

…
zd

Latent Variables zEncoder Decoder

Reconstruction Loss

Fig. 4: Architecture of an autoencoder.

Encoder

Decoder

μ(X)

σ(X)

ε~(0,I)

z1

z2

…
zd

Reconstruction Likelihood

Di
ve

rg
en

ce

Fig. 5: Architecture of a VAE.

ML-based Routing Guidance
Generation

Data Pre-processing

Trained ML Model

Guided AMS Routing

Guided Detailed Routing

Post-processing

ML Model
Training

AMS Circuit
Layout Database

Dashed: Training

Solid: Inference

Fr
am

ew
or

k

Placement

Routed Layout

Fig. 6: The overall flow of GeniusRoute.

sample ε ∼ N(0, I) and then compute z = µ(X) + σ1/2(X) ∗ ε
[26]. In summary, Fig. 5 shows the architecture of a VAE. In a VAE
structure, µ(z) and σ(z) are trained by neural networks, and ε is
sampled from a simple Gaussian distribution.

Autoencoder and VAE models often embed convolution layers in
the neural networks to leverage the effectiveness of convolutional
neural network (CNN) in computer vision applications [27].

III. THE GENIUSROUTE ALGORITHM

In this section, we present the proposed GeniusRoute framework
flow and detail the algorithms. Figure 6 shows the overall flow of
GeniusRoute. The framework consists of two phases: training and

Pr
e-

pr
oc

es
si

ng

Manual Routed Layout

Pins of Entire Design

Pins of Interested Nets

Manual Routing

(a)

Neural Network

Pins of Entire Design

Pins of Interested Nets

Ground Truth:
Manual Routing

Generated
Routing Region

Minimize
Loss

(b)

Fig. 7: Training phase. (a) Data pre-processing. (b) Model training.

inference. In the training phase, neural networks are trained to extract
design expertise from manual layouts. The training phase consists
of data pre-processing and model training. Due to the efficiency in
image-based generative learning algorithms[27], GeniusRoute adopts
images for representing placements and routing. In the data pre-
processing stage, routing-relevant information are extracted from
placement layouts into 2D images. Then the model training stage
captures the human behaviors into machine learning models. Figure 7
shows the flow of the training phase. In the inference phase, the
framework conducts machine-guided analog routing leveraging the
trained machine learning models. The inference phase firstly pre-
process the placement, then generates the routing probability map
via trained models. The downstream AMS router routes the design
following the probability map as guidance in the end. Figure 8 shows
the flow of the inference phase.

The inference phase uses the model trained in the training model
and takes the inputs defined in Sec. II-A to perform the analog
routing. Instead of relying on the detailed guidelines or constraints,
GeniusRoute attempts to generate human-like routing with minimum
extra information from the inputs. To be specific, the symmetric
nets and the types of nets are assumed to be more “obvious” to
the designers than the guidelines on the physical layouts and can
be potentially identified by existing constraint generation algorithms
such as [5].

GeniusRoute consists of three tasks: (1) layout pre-processing to
extract the data for neural network model (Sec. III-A), (2) model
training to learn human layout approaches and generate routing
guidance (Sec. III-B) and (3) performance-driven analog routing
framework by mimicking manual layouts (Sec. III-C). The details
of the three tasks will be discussed in the rest of this section.

A. Data Representation and Pre-processing

Data pre-processing abstracts the routing and placement and ex-
tracts the routing-relevant information for machine learning models.
To effectively learn the relation between routing and placement, a
good strategy of layout-image conversion is needed.

Unrouted Placement

Pins of Entire Design

Pins of Interested NetsPr
e-

pr
oc

es
si

ng

(a)

Neural Network

Pins of Entire Design

Pins of Interested Nets

Generated
Routing Region Do

w
ns

tre
am

 A
M

S
Ro

ut
er

Routed
Layout

(b)

Fig. 8: Inference phase. (a) Data pre-processing. (b) Model inference.

Extracting routing from layouts into images is relatively straight-
forward; the regions that metal interconnections of the given nets
lay in can be easily converted into 2D images. On the other hand,
the information from placements that affects the routing decisions is
latent and needs additional definitions.

1) Placement Data Representation: In order to infer the routing
probability map, placement data representation needs to capture the
concise “pins” for the input nets and also a high-level global view
of the whole placement. In GeniusRoute, the global view is captured
by the “pins” of all the nets in the entire design. This allows the
trained model to consider the routing of other nets, which might
largely impact the routing decisions. In summary, for each data point,
we extract the pins for the entire design and the pins for the given
nets and map them into two separate channels of an image. In all
experiments, the image size for each channel is selected to be 64×64.

However, unlike the standard cell-based digital routing, the concept
of “pins” is ambiguous in customized analog circuits. For example,
layout designer may choose to have a common “pin” for multiple
fingers of one device (Fig. 9(a)) or connect every finger separately
(Fig. 9(b)). To generalize the methodology in extracting the starting
points of routing, we propose the following strategy:

1) The first metal layer (M1) shapes overlapping with contact
window (CO) shapes are pins. CO layer is used as contacts
between interconnection metals and oxide diffusion (OD) or
poly-silicon (PO). The pins identified with this strategy in
practice are the terminal points of the metal interconnection
for typical transistor and resistor devices.

2) Metal oxide metal capacitor uses metal layers as the terminals
for routing and are labelled by hands in our experiments.

3) Nets sometimes have additional ports connecting the external
system and are labelled by hands in our experiments.

2) Data Pre-processing: Data processing step takes the layout, list
of nets of interest, and additional labeled pins as inputs, and outputs
placement and routing information as images for the downstream
machine learning models.

The layouts in both training and inference phases are in GDSII
format. GDSII represents the layout as shapes in different layers, e.g.,
metal and via layers. To identify the nets of interest in the layout, we
label a text of net name on the layout for each net of interest. Since

(a) (b)

Fig. 9: Examples of pins of transistors. (a) Combined pin for fingers.
(b) Separated pin for fingers.

the standard layout flow requires all IO nets being labelled to pass
Layout Versus Schematic, the number of nets that needs additional
manual labeling is reasonably small.

Algorithm 1 describes the main steps of data pre-processing.
Firstly, the layouts are read, and a disjoint set is constructed with
each shape as an individual set. An R-tree is also built for fast
geometrical querying of the shapes and text labels (line 1-7). Then
the connectivity of all shapes is explored by querying the overlapping
relations between shapes. The overlapping shapes will be unioned in
the disjoint set (line 8-11). During the process, the text labels are
also be investigated, and the net names are assigned to the disjoint
sets (line 12-14). After the shape clustering and labeling, the pins
and routing segments are aggregated in channels and exported into
desired images (line 15-18).

Algorithm 1 Layout Data Pre-Processing

Input:
Layout L
List of explicitly labeled pins P
List of interested nets N

Output:
Pins of entire design CH1

Pins of interested nets CH2

Routing of interested nets CH3

1: S ←read layout shapes(L)
2: R ← R-tree
3: D ← Disjoint set
4: for all s in S do
5: if s is metal, via, CO, PO or pin label then
6: R.insert(s)
7: D.make set(s)
8: for all s in S do
9: if s is metal, via, CO or PO then

10: S∗ ← Query shapes overlapping with s in R
11: Union the sets for s and S∗

12: if s is net label then
13: S∗ ← Query shapes overlapping with s in R
14: Label the sets of S∗ to be net s.text
15: Add all p ∈ P to CH2

16: Save all pins to CH1

17: Save all pins in {d ∈ D : d.net ∈ N} to CH2

18: Save all metals in {d ∈ D : d.net ∈ N} to CH3

When exporting the images, we apply Gaussian blurring on the
images (Fig. 10) to remove unwanted details for two reasons:
encouraging the models to focus on the routing regions rather that
the exact metal shapes and improving the model accuracy. We choose
Gaussian kernel sizes to be 17×17 for routing and 5×5 for placement
in all experiments.

Fig. 10: Gaussian blurring.

B. Machine Learning-based Routing Guide Generation

Predicting the routing has two major challenges: the routing
problem is difficult, and labeled data are limited and costly to obtain.
To efficiently learn a general routing strategy and overcome the
shortage of labeled data, we refine the objective of our learning task
and use semi-supervised training methods.

1) Learning Tasks: We propose to learn the probability map of
routing with multiple models.

Probability Map: While generative learning model is for learning
probabilistic distributions, routing is a discrete and highly-constrained
problem. Directly trying to reproduce routing through machine
learning is difficult. Furthermore, good routing solutions may not
be unique. It is preferred to make routing predictions based on a
general strategy rather than following a particular example the model
has learned. In other words, hoping the machine learning model to
produce an unique routing solution is not fitting to the practice.
Hence, we propose to predict the probability map that models the
routing likelihoods in each region.

Special Net Types: Compared to training a general model
for different applications, using different models for reduced tasks
simplifies the problems and is more efficient in learning. Knowing
different net functionality has different routing strategy a priori,
GeniusRoute trains different models for different net types. Within
the scope of our training and testing data, three major special net
types are chosen for learning: (1) differential nets, (2) clocks and
(3) power and ground (PG).

During learning, different models adopt different strategies based
on the practical problem of the net type. Differential nets are varied
in scope and the combined ”sensitive” region is more important for
the downstream router. Therefore, in GeniusRoute, all nets belonging
to the type are combined in learning, and the model predicts the
routing region for the whole class of nets. On the other hand, we use
single power or ground for the PG model to learn human behaviors
in planning power and ground lines.

2) Semi-supervised Machine Learning Algorithm: We propose a
semi-supervised machine learning algorithm to predict the routing
probability. The algorithm consists of two parts, unsupervised and
supervised learning. This subsection first presents the neural network
architecture. Then we introduce the data augmentation technique
being used to improve the data efficiency. Finally, the semi-supervised
training procedure is explained in details.

Neural Network Architecture To avoid overfitting to limited
training data, we choose small and simple encoder and decoder
networks. The dimension of the latent variable vector defined in Sec.
II-D is kept small and set to 32. Table I shows the detailed architecture
of the neural network. The ReLu activation layers after each convolu-
tion (conv), deconvolution (deconv), and fully connected (FC) layers
are omitted for simplicity. Since the learning objectives are different
in the unsupervised training phase (Stage 1) and supervised training
(Stage 2 & 3) phase, there is a minor difference in the structure of the
decoder networks. This difference will be explained in details below.

Data Augmentation: GeniusRoute applied data augmentation to
improve the data efficiency [27]. Data are augmented by 1) flipping

TABLE I: Network configurations.

Stage 1 Configuration

Input (2 × 64 × 64 image)
conv/5 × 5 × 64

conv/5 × 5 × 128
FC/64

Latent Variables (32)

FC/16 × 16 × 64 FC/16 × 16 × 64
deconv/4 × 4 × 32 deconv/4 × 4 × 32
deconv/4 × 4 × 1 deconv/4 × 4 × 1

Output (2 × 64 × 64 image)

Stage 2 & 3 Configuration

Input (2 × 64 × 64 image)
conv/5 × 5 × 64

conv/5 × 5 × 128
FC/64

Latent Variables (32)

FC/16 × 16 × 64
deconv/4 × 4 × 32
deconv/4 × 4 × 1

Output (1 × 64 × 64 image)

horizontally, 2) flipping vertically, and 3) rotating 180°.
Training data are labeled in the three aforementioned special net

types. After the data augmentation, the numbers of labeled data points
for clock, differential nets, and power/ground nets are 168, 128, 256
respectively. On the other hand, the number of unlabeled data points
is 6360 after data augmentation.

Semi-supervised Training Algorithm: Inspired by [28], we use
the semi-supervised training strategy as shown in Fig. 11 to leverage
the unlabeled data. The training procedure consists of three stages:

1) Unsupervised initial feature extraction. The encoder and de-
coder networks are initialized with Gaussian random weights.

2) Supervised decoder training. We initialize encoder network
with the pre-trained encoder network and the decoder network
with Gaussian random initialization. The encoder weights are
fixed, and only the decoder is trained for this stage.

3) Model fine-tuning. We fine-tune both the encoder and decoder
networks together with a reduced learning rate.

Stage 1 (Fig. 11(a)) learns an encoder network to effectively extract
the latent feature variable in an unsupervised fashion. This allows
us to fully exploit unlabeled data. The encoding network extracts
features from both pins of the target nets and its corresponding layout
placement. The decoding network outputs the two corresponding
reconstructions of the input images. The objective of this standard
VAE is to maximize

logP (X|z)−DKL[Q(z|X)||P (z)].

With such objective, the model is trained such that at the bottleneck
level between encoder and decoder, the latent variable vector contains
enough compact information to reproduce the image. Hence it can
be used as a feature vector representing the inputs. The goal of this
stage is to extract important features of pre-processed placements
using unlabeled data and provides a generalized initial points for the
following supervised learning.

Stage 2 (Fig. 11(b)) trains a generative network to predict routing
for different net types. Distinct model is trained for each net type on
the labeled data. In this stage we keep the encoding network fixed to
the pre-trained network in the unsupervised feature extraction stage.
The generative decoder network outputs a single image as the routing
probability prediction. The objective is to minimize the L2 norm of
the distance between ground truth Y and inferred output Ŷ , i.e.,

||Y − Ŷ ||2.

Stage 3 (Fig. 11(c)) fine-tunes the entire model to achieve better
accuracy. Since the network is already close to a nearly optimal point,
we set our learning rate much lower than that in Stage 1 and 2. The
objective is to maximize

logP (Y |z)−DKL[Q(z|X)||P (z)].

Encoder
1

Decoder
1

(a)

Encoder
1

Decoder
2

Fixed

(b)

Encoder
1->2

Decoder
2->3

(c)

Fig. 11: Tree-stage training algorithm. (a) Stage 1: unsupervised
initial feature extraction. (b) Stage 2: supervised decoder training.
(c) Stage 3: model fine-tune with reduced learning rate.

Intuitively, the unsupervised training stage extracts placement and
net pin features from the entire unlabeled data set. The feature
extraction generalizes the extracted features and avoids overfitting to
the small labeled data set. The supervised decoder training allows the
model to specialize in the prediction for different net types. The fine
tuning stage with reduced learning rate allows small perturbations to
the encoder and decoder for higher prediction accuracy. Through this
approach, we can pertain the knowledge learned from unsupervised
learning while achieving higher accuracy in predicting the routing
guidance for different net types.

C. Guided Analog Detailed Routing

In the inference phase, GeniusRoute adopts the A∗ search al-
gorithm for detailed routing. It leverages the routing guidance R
generated by machines models to make routing decisions. Our
analog routing flow consists of two steps: detailed routing and post-
processing.

1) Detailed Routing: Detailed routing routes all nets via A∗

search, honoring symmetric constraints and input routing guidance.
Our approach is summarized as follows:

1) Large pins are split into sets of searching points at the inter-
sections of routing tracks with pins.

2) Each multi-pin net is decomposed into a set of 2-pin nets by
Minimum Spanning Tree.

3) A∗ search is applied to connect the 2-pin nets in a sequential
manner. During each search, routing guidance R is honored
via penalties in the cost function. Symmetric constraints are
enforced by mirroring the nets. In addition, when searching
paths for nets with routing guidance, it is non-trivial to estimate

the heuristic costs in the A∗ search routine. Therefore the
heuristic costs are set to zero in such cases to avoid giving
preference in the search direction. In other words, we de facto
route the nets with guidance in a Maze routing fashion.

4) A negotiation-based rip-up and reroute scheme is implemented
to ensure feasibility.

We embed the routing guidance as cost functions in A∗ search,
together with other common routing objective such as wire length
and penalty of vias. The cost from the routing guidance is composed
of two parts: the penalty of violating the guidance (violating cost), and
the cost of routing in the region of other nets demand (competition
cost). Violating cost is a monotonic decreasing function of probability
map, i.e., Costviolate = f(rni,j). In this paper we choose f to
be f(x) = a + b

2(x/c) . Competition cost is the penalty of routing
the net in a region demanded by other nets in routing guidance
and is determined by the difference of rni,j and the average routing
probability r̄i,j , i.e. Costcompete = g(r̄i,j − rni,j). We choose
g(x) = max(d · x, 0). In summary, the proposed cost function
is Cost = Costwire + CostV IA + Costhistory + Costviolate +
Costcompete.

2) Post-Processing for Power Delivery Network: PG routing is
further polished in a post-processing step. Additional connection
between pins for VDD and VSS nets are routed based on the routing
guidance.

The post-processing consists of following steps:
1) Potential pin connections are identified via breadth-first search

on the routing probability map R. Pairs of pins are considered
as candidates if there is a confident path between them on R.

2) Candidates are pruned by removing the pairs that were routed
previously.

3) Pins are routed via A∗-based detailed routing routine.
After the detailed routing and post-processing, the routed layout is

exported into GDSII format.

IV. EXPERIMENTAL RESULTS

We implemented the proposed routing guide generation in Python
based on Tensorflow [29], and the data pre-processing and detailed
routing algorithm were programmed in C++. All experiments were
performed on a Linux workstation with Intel 3.4GHz i7-3770 CPU
and Nvidia GTX1080 GPU with 32GB memory.

As discussed in Sec. III-B, we collect both unlabeled and labeled
human layouts for training data. The labeled data are categorized
into differential nets, clocks and PG nets from component-level
analog circuits. To be specific, the labeled data are all collected
from comparator and operational amplifier (OpAmp) designs while
the unlabeled data include a variety of component-level circuits from
multiple mixed-signal system designs. Comparators and OpAmps are
among the most representative analog components in mixed-signal
systems such as data converters.

A. Experimental Results on Learning Models

We first conduct experiments on the trained neural network models.
Figure 12 shows output examples of the model inference on testing
sets. Among the results, first three (Fig. 12 (a)-(c) are manual
placements, while the last three (Fig. 12 (d)-(f)) are automatic
placements from [30]. Figure 12 (a) and (c) are outputs of the clock
model, figure 12 (b) and (e) are from differential nets model, and
figure 12 (c) and (f) are from PG model. The machine learning models
not only learn well in manual placements, but are also capable of
generating reasonable outputs for machine-generated placement for
clock and differential nets. However, the PG model fails to predict

(a) (b) (c) (d) (e) (f)

Fig. 12: Example of inferences of testing set. The upper row shows
the ground truth, and the lower row shows the inference.

the routing for automatic placement (Fig. 12(f)). The PG pins in
automatic placement have different patterns from the manual layouts
of the training data; hence the model had not seen an example
of routing with similar placement and failed to make reasonable
inference.

A major challenge of training a general models for routing
probability is the lack of training data. As discussed in Sec. III-B,
GeniusRoute attempts to learn a relatively rough routing probability
instead of detailed routing implementation using small network
models. In the scale of experiments, routing PG nets incorporates
more detailed considerations such as IR drop than routing clocks and
differential nets. Thus with limited number of training data, learning
a general routing strategy for PG nets is intuively and empircally a
more difficult task.

B. Experimental Results on GeniusRoute Framework

To evaluate our proposed framework, we conducted experiments
on two analog circuits placements by experienced designers, a
comparator (COMP1) and two-stage miller-compensated operational
transconductance amplifier (OTA). To further validate the generality
of our machine learning models, we also tested our framework
on a machine-generated placement [30] (COMP2) with the same
schematic of COMP1. We conducted our experiments in TSMC 40nm
process. After routing the circuits, we used Calibre PEX to extract
parasitic RC and coupling capacitance and used Cadence ADE to
perform post-layout simulations.

TABLE II: Runtime. (seconds)

W/o guide This work
COMP1 11.7 26.2
COMP2 2.3 21.3

OTA 49.6 55.4

TABLE III: Runtime breakdown. (seconds)

PP MI DR
COMP1 <1 17.6 8.6
COMP2 <1 17.6 3.7

OTA 3.5 13.2 38.7

Table II shows the run time of our proposed framework. “W/o
guide” denotes the runtime of our detailed analog router alone without
routing guidance. “This work” refers to our proposed framework. The
runtime for the proposed framework includes all steps in the inference
phase, and Table III shows the runtime breakdown. “PP”, “MI”
and “DR” denotes data pre-processing, model inference and detailed
routing correspondingly. To avoid outliers, we did ten experiments on
model inference and took the average time as the runtime for each
execution. The reported model inference runtime in each experiment

is calculated by multiplying the model inference execution time by
the number of model inference operations needed. Model inference
execution times are treated as the same for the three models since they
employ similar network structures. Note that the majority time of the
model inference is on loading the model parameters. While data pre-
preprocessing and detailed routing runtime scales with circuit size,
the model inference time is irrelevant to the layout size and only
depends on the number of inferences needed.

For comparison, we implement the algorithm in [11] with the
following modification: (1) Some of our pins are inside active regions
and forbidding routing over active regions is infeasible for some
nets. Thus, we assign a substantial penalty for routing over active
regions instead of setting a hard constraint. (2) As the authors [11]
do not explicitly state their strategy in choosing the maximum allowed
parallel run length, we choose to avoid routing two nets with spacing
within 1µm in parallel for more than 2µm; (3) Instead of using only
M1 and M2, we used M1-M3 for routing because some of the pins
in experiments are on the M3 layer.

TABLE IV: Comparison of post-layout simulation results for
COMP1.

Schematic Manual [11] W/o guide This work
Offset (µV) / 480 1230 2530 830
Delay (ps) 102 170 180 164 163

Noise (µVrms) 439.8 406.6 437.7 439.7 420.7
Power (µW) 13.45 16.98 17.19 16.82 16.80

TABLE V: Comparison of post-layout simulation results for COMP2.

Schematic Manual [11] W/o guide This work
Offset (µV) / 550 350 1180 280
Delay (ps) 103 196 259 235 241

Noise (µVrms) 439.8 380.0 383.6 369.6 367.8
Power (µW) 13.45 20.28 20.17 20.23 20.15

Table IV and V show the post-layout simulation for the two
comparator layouts, COMP1 and COMP2. “Offset” denotes the input-
referred offset. “Delay” is the output delay measured with 500
µV differential input. “Noise” is the input-referred noise referred
measured with 550 mV common mode input. “Power” is measured
with 500µV differential input voltage, 200 MHz clock and 1.1 V
supply voltage. In both two experiments, we achieve comparable
performance to manual routing. Our work consistently outperform
[11] in all performance metrics. Compared to the results without
routing guidance, we achieve 67% and 76% reduction in input-
referred offset, with comparable or better results in other metrics.
We observed that [11] results in lower input-referred offset and
higher output delay compared to our baseline “W/o guide”. It might
be caused by the avoidance of routing over active regions, which
reduce critical nets coupling to sensitive devices but introduce extra
parasitics.

TABLE VI: Comparison of post-layout simulation results for OTA.

Schematic Manual [11]* W/o guide This work
Gain (dB) 38.20 37.47 43.60 36.61 37.36

PM (°) 64.66 72.46 29.97 94.68 76.40
Noise (µVrms) 222.0 223.7 278.8 292.7 224.8
Offset (mV) / 0.88 2.49 3.21 0.39
CMRR (dB) / 59.61 29.97 58.52 59.15
BW (MHz) 110.5 102.5 92.4 232.1 107.3

Power (µW) 776.93 757.35 528.11 715.11 787.82
* Without active region avoidance

Table VI shows another experiment of OTA. “Gain” refers to DC
open loop gain. “PM” denotes phase margin. “Noise” and “Offset”

Fig. 13: GeniusRoute layout of OTA.

are input-referred noise and input-referred offset. “BW” abbreviates
for unity-gain bandwidth. “Power” is the DC power measured with
1.1 V supply voltage. In the table, we show the simulation results
of [11] without routing over active regions constraint. Routing
over active regions brings extra parasitic capacitance to sensitive
nodes and causes failure in common-mode feedback. As a result,
the OTA becomes dysfunctional. Compared to manual layout, our
routing achieves similar performance, with minor degradation in
phase margin and a slight improvement in input-referred offset. On
the other hand, “W/o guide” result has significant shifts from the
schematic in phase margin and unity-gain bandwidth and notable
drop in performance of DC gain and input-referred offset. Figure 13
shows the resulting layout of OTA.

V. CONCLUSION

In this paper, we present a new methodology in analog IC routing
by automatically learning human behaviors in manually routed lay-
outs. GeniusRoute, a performance-driven analog routing framework,
is proposed with routing guidance generation and automatic guided
analog detailed routing. GeniusRoute proposes a new methodology
of automatically extracting routing regions for different nets from
human layouts and apply the learned knowledge into analog router.
Experimental results show that our proposed framework produces
performance close to manual design and outperforms a previous work
of analog routing in component-level circuits.

ACKNOWLEDGEMENT

This work is supported in part by the NSF under Grant No.
1704758, and the DARPA ERI IDEA program. The authors would
like to thank Mohamed Baker Alawieh, Jiaqi Gu and Wuxi Li
from The University of Texas at Austin for helpful comments and
discussions.

REFERENCES

[1] M. P. Lin, Y. Chang, and C. Hung, “Recent research development and
new challenges in analog layout synthesis,” in ASPDAC, Jan 2016, pp.
617–622.

[2] R. A. Rutenbar, “Analog circuit and layout synthesis revisited,” in ISPD,
2015, pp. 83–83.

[3] J. Crossley, A. Puggelli, H. . Le, B. Yang, R. Nancollas, K. Jung,
L. Kong, N. Narevsky, Y. Lu, N. Sutardja, E. J. An, A. L. Sangiovanni-
Vincentelli, and E. Alon, “Bag: A designer-oriented integrated frame-
work for the development of ams circuit generators,” in ICCAD, Nov
2013, pp. 74–81.

[4] E. Chang, J. Han, W. Bae, Z. Wang, N. Narevsky, B. NikoliC, and
E. Alon, “Bag2: A process-portable framework for generator-based ams
circuit design,” in IEEE Custom Integrated Circuits Conference (CICC),
April 2018, pp. 1–8.

[5] U. Choudhury and A. Sangiovanni-Vincentelli, “Constraint generation
for routing analog circuits,” in DAC, June 1990, pp. 561–566.

[6] E. Charbon, E. Malavasi, U. Choudhury, A. Casotto, and A. Sangiovanni-
Vincentelli, “A constraint-driven placement methodology for analog
integrated circuits,” in IEEE Custom Integrated Circuits Conference
(CICC), vol. 28, 1992, pp. 1–4.

[7] J. M. Cohn, D. J. Garrod, R. A. Rutenbar, and L. R. Carley,
“Koan/anagram ii: new tools for device-level analog placement and
routing,” JSSC, vol. 26, no. 3, pp. 330–342, March 1991.

[8] P. Lin, H. Yu, T. Tsai, and S. Lin, “A matching-based placement and
routing system for analog design,” in International Symposium on VLSI
Design, Automation, and Test (VLSI-DAT), April 2007, pp. 1–4.

[9] H. Ou, H. C. Chien, and Y. Chang, “Non-uniform multilevel analog
routing with matching constraints,” in DAC, June 2012, pp. 549–554.

[10] P. Pan, H. Chen, Y. Cheng, J. Liu, and W. Hu, “Configurable analog
routing methodology via technology and design constraint unification,”
in ICCAD, Nov 2012, pp. 620–626.

[11] L. Xiao, E. F. Y. Young, X. He, and K. P. Pun, “Practical placement and
routing techniques for analog circuit designs,” in ICCAD, Nov 2010, pp.
675–679.

[12] C. Wu, H. Graeb, and J. Hu, “A pre-search assisted ilp approach to
analog integrated circuit routing,” in ICCD, Oct 2015, pp. 244–250.

[13] H. Chi, H. Tseng, C. J. Liu, and H. Chen, “Performance-preserved analog
routing methodology via wire load reduction,” in ASPDAC, Jan 2018,
pp. 482–487.

[14] Q. Gao, Y. Shen, Y. Cai, and H. Yao, “Analog circuit shielding routing
algorithm based on net classification,” in ISLPED, Aug 2010, pp. 123–
128.

[15] H. Ou, H. Chang Chien, and Y. Chang, “Simultaneous analog placement
and routing with current flow and current density considerations,” in
DAC, May 2013, pp. 1–6.

[16] J.-W. Lin, T.-Y. Ho, and I. H.-R. Jiang, “Reliability-driven power/ground
routing for analog ics,” in ACM TODAES, vol. 17, no. 1. New York,
NY, USA: ACM, 2012, pp. 6:1–6:26.

[17] R. Martins, N. Lourenço, A. Canelas, and N. Horta, “Electromigration-
aware and ir-drop avoidance routing in analog multiport terminal struc-
tures,” in DATE, March 2014, pp. 1–6.

[18] E. C. Barboza, N. Shukla, Y. Chen, and J. Hu, “Machine learning-based
pre-routing timing prediction with reduced pessimism,” in DAC, 2019,
pp. 106:1–106:6.

[19] Y. Cao, A. B. Kahng, J. Li, A. Roy, V. Srinivas, and B. Xu, “Learning-
based prediction of package power delivery network quality,” in ASP-
DAC, 2019, pp. 160–166.

[20] M. B. Alawieh, Y. Lin, Z. Zhang, M. Li, Q. Huang, and D. Z. Pan, “Gan-
sraf: Sub-resolution assist feature generation using conditional generative
adversarial networks,” in DAC, 2019, pp. 149:1–149:6.

[21] W. Ye, M. B. Alawieh, Y. Lin, and D. Z. Pan, “Lithogan: End-to-end
lithography modeling with generative adversarial networks,” in DAC,
2019, pp. 107:1–107:6.

[22] B. Xu, Y. Lin, X. Tang, S. Li, L. Shen, N. Sun, and D. Z. Pan,
“Wellgan: Generative-adversarial-network-guided well generation for
analog/mixed-signal circuit layout,” in DAC, 2019, pp. 66:1–66:6.

[23] H. Yang, P. Pathak, F. Gennari, Y.-C. Lai, and B. Yu, “Deepattern: Layout
pattern generation with transforming convolutional auto-encoder,” in
DAC, 2019, pp. 148:1–148:6.

[24] P. Wu, M. P. Lin, and T. Ho, “Analog layout synthesis with knowl-
edge mining,” in European Conference on Circuit Theory and Design
(ECCTD), Aug 2015, pp. 1–4.

[25] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
International Conference on Learning Representations (ICLR), 2014.

[26] C. Doersch, “Tutorial on variational autoencoders,” in arXiv preprint
arXiv:1606.05908, 2016.

[27] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[28] Y. Zhang, K. Lee, and H. Lee, “Augmenting supervised neural networks
with unsupervised objectives for large-scale image classification,” in
International Conference on Machine Learning (ICML), 2016, pp. 612–
621.

[29] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean et al.,
“Tensorflow: a system for large-scale machine learning.” in OSDI,
vol. 16, 2016, pp. 265–283.

[30] B. Xu, S. Li, C.-W. Pui, D. Liu, L. Shen, Y. Lin, N. Sun, and D. Z. Pan,
“Device layer-aware analytical placement for analog circuits,” in ISPD,
2019, pp. 19–26.

